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Abstract. The SO (4) invariance of the transfer matrix for the one-dimensional Hubbard model

is clarified from the viewpoint of the quantum inverse scattering method. We demonstrate the
SO(4) symmetry by means of the fermionic-operator and the fermioni®-matrix, which
satisfy the graded Yang—Baxter relation. The transformation law of the fermiowiperator

under theS O (4) rotation is identified with a kind of gauge transformation, which determines
the corresponding transformation of the fermionic creation and annihilation operators under the
SO (4) rotation. The transfer matrix is confirmed to be invariant undeSthé4) rotation, which
ensures th€ O (4) invariance of the conserved currents including the Hamiltonian. Furthermore,
we show that the representation of the higher conserved currents in terms of the Clifford algebra
gives manifestlyS O (4) invariant forms.

1. Introduction

Recently, there has been much interest in the correlated electron systems. Several models
are known to be exactly solvable in one dimension [1-6]. Among them the one-dimensional
(1D) Hubbard model

N N
H=- Zl ;(0L56m+h + Ci/lJrlscﬂ'lS) +U Zl(an - %)(nml - %) (11)

is the most important one, which describes the correlation of the electrons occupying the
same site. Herefm andc,,, are the fermionic creation and annihilation operators with spin

s(=1]) at sitem(= 1, 2,..., N) satisfying the canonical anticommutation relations
{Ciu’ Cm’s’} = 8mm’5ss’ {C,];”, C:rn’s/} = {cmsv Cm’s’} =0 (12)
andn,, is the number density operator
Nps = C,Lscmx (s :T\L) (13)

The parametet/ is the coupling constant. Lieb and Wu [1] diagonalized the Hamiltonian
(1.1) under the periodic boundary condition

hrs =l CN+1s = Clg (s =1). (1.4)
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Many physical properties have been investigated based on the associated Bethe ansatz
equation (see the reprint volume [7]).

The Hamiltonian (1.1) enjoys tweu(2) symmetries [8-12]. One is the spin{2)
generated by

N N N
St — ZCLTC"N ST = chmcmT S? = % Z(an —npy) (1.5)
m=1 m=1

m=1

and the other is charget(2) (n-pairing su(2)) generated by

N N N
nt=Y (=D"ceh =D D eems =3 ey g — D).
m=1 m=1 m=1

(1.6)

When we assume the periodic boundary condition (1.4), the number oféit®uld be
even for the consistency of the chargg?). In this case, the spisu(2) and the charge-
su(2) are connected through the partial particle—hole transformation

Cmt —> Cmp Cmy — (—1)’”cjw U— —U. .7
As is well known, these tweu (2) are not independent and should be considered as elements
of a bigger algebrao(4) [10]

so(4) = su(2) @ su(2). (1.8)

The so(4) plays a very important role for the physical features of the 1D Hubbard model
[7]. For example, it was proved by ERlet al [13-15] that the Bethe ansatz states of the
1D Hubbard model are incomplete and have to be complemented by thesymmetry.
ERler and Korepin [16, 17] showed that the elementary excitations of the half-filled band
constitute the multiplets ofo(4).

Several authors have discussed the generalization of the Lie algebra symaotdjrio
the group symmetns O (4). Following Affleck et al [18], we introduce the X% 2 matrices

T i T i
Ch o 1Co—1 Co, —lcy, N
\I’zn_]_:(,z]Lnu T) \1‘2,1=<2ini T) n:l,...,—. (19)
I€,_1p  Con-1) 1€y —Cony 2
For convenience, the definition df,, in this paper is chosen to be different from the usual
one [12, 18]. However, they are essentially equivalent.

The spinSU (2) transformation can be realized by the left multiplication of & (2)
matrix

v, — Ospin\ym Ospin e SU(2)

while the chargeSU (2) transformation corresponds to the right multiplication of another
SU (2) matrix,

v, — ‘Ijmocharge Ochargee SU(2).
Since the left and the right matrix multiplications are commutative, the transformation
\i/m = Ospinq’mocharge (1.10)

gives theSU (2) x SU (2) transformation among the fermion operators. More precisely, the
exact group symmetry is

SO@) = [SU@2) x SU2)]/Z>
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because the choice8spin = —1, Ochage = 1 and Ospin = 1, Ocharge = —1 induce the
same transformation. The infinitesimal transformation of (1.10) gives the Lie algebra
symmetry (1.8).

The integrability of the 1D Hubbard model with the periodic boundary condition was
established by Shastry [19-21] and Olmedilla and co-workers [22, 23]. Shastry introduced
a Jordan—-Wigner transformation, which changes the fermionic Hamiltonian (1.1) into an
equivalent coupled spin model

N N N
_ _ _ _ U
H = z :(O’r;::rlorm + O’ntaerl) + z :(rnTJrlrm + ‘L',::'(erl) + Z z :01121.(151' (111)
m=1 m=1 m=1

Hereos andzt are two species of the Pauli matrices commuting each other. For this equivalent
coupled spin model, Shastry constructed heperator and th&-matrix (see the appendix),
which satisfy the Yang—Baxter relation

Ru2(61, 02)[Lin (01) ® Ly (62)] = [Ln(62) ® Ly (61)] R12 (01, 02). (1.12)

The Yang—Baxter equation for ShastryRsmatrix was recently proved in [24] (see also
[25, 26]).

The coupled spin model (1.11) is also referred to as the 1D Hubbard model, since
they are related through the Jordan—Wigner transformation. However, there are differences
between the coupled spin model (1.11) and the fermionic Hamiltonian (1.1). It is well
known that the periodic boundary condition for the fermion model does not correspond
to the periodic boundary condition for the equivalent spin model. Moreover, due to the
non-locality of the Jordan—Wigner transformation, the generators ofdt® symmetry,

(1.5) and (1.6), become non-local in terms of the spin operataasd r. Thus, it is more
transparent to employ the fermionic formulation of the Yang—Baxter relation developed by
Olmedillaet al [22], when we investigate th&0 (4) or other symmetries of the 1D Hubbard
model from the viewpoint of the quantum inverse scattering method (QISM).

Recently, ®hmann and Murakami [27] demonstrated that the transfer matrix
constructed from the fermioni&-operators has theu(2) ® su(2) symmetry. The main
purpose of this paper is to generalize their result to the finite symmetry, namefioxt®
symmetry corresponding to (1.10).

Compared with other models (see [29-31]), the algebraic structure of the 1D Hubbard
model is not yet fully clarified. Our result will provide a further step to the complete
understanding of the mathematical structure of the model.

This paper is organized as follows. In section 2, we give a brief summary of the
fermionic formulation of the QISM for the 1D Hubbard model. Some important properties
of the fermionicR-matrix are explained. In section 3, we prove e (4) invariance of the
fermionic transfer matrix. It is shown that th#0 (4) rotation for the fermion operators is
related to a kind of gauge transformation of the fermiahioperator. When the number of
sites is even, we can establish tH@ (4) symmetry of the transfer matrix under the periodic
boundary condition. When the number of sites is odd, we have to impose a twisted periodic
boundary condition to establish tl§& (4) symmetry of the transfer matrix. In section 4, we
discuss the invariance of the transfer matrix under the partial particle—hole transformation.
In section 5, we give a new representation of some higher conserved currents using the
Clifford algebra. TheSO(4) invariance of the conserved currents becomes obvious in this
representation. The final section is devoted to discussions.
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2. Graded Yang—Baxter relation for the 1D Hubbard model

As a preparation for later sections, we shall summarize the fermionic formulation of the 1D
Hubbard model [22, 23, 28]. The fermionic-operator is

L (60)
—€ [ O) fus 0) = fur (0)Cmy iCmt fny (0) i€/ Cput Cmy
| @, e @ @) e, iCmt g, (0) 20
| i@ elchiem, €M@ [l ) gur (O)cmy '
—iehcl, el chygmi ©) gt O)c),  —€ w1 (0)gm, (0)
where

fins(0) = SiNO — {sin6 — icosh}n,,
gms(0) = cosh — {C0SH + iSiNO}n,;.

The parameten is related to the spectral paramefeand the Coulomb coupling constant
U through the relation

sinh 2 Y

= —. 2.2
sin2 4 (2:2)
We express by the Grassmann (graded) direct product
[A® Blay.ps = (_1)[P(a)+P(ﬁ)]P(y)AaﬁBy8
s (2.3)
Pl =P@4) =0 P2)=PQR3) =1
The fermionicL-operator satisfies the graded Yang—Baxter relation [22]
Ra2(61. 602)[ L (61) ® L1 (02)] = [£1(B2) ® L1y (O] R12(61. 62) (2.4)

under the constraint of the spectral parameter (2.2).
The explicit form of the fermionicR-matrix is [22]

R12(61, 62)
at 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\
0 e 0 0 b= 0 0 0 0 0 0 0 0 0 0 0
0 0 e 0 0 0 0 0 b 0 0 0 0 0 0 0
O 0 0 4t 0 0 —if 0 0 if 0 0 —+ 0 0 0
0 —ibt 0 0 e 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0
0 0 0 if 0 0 d- 0 0 —c 0 0 —if 0 0 0
_ 0 0 0 0 0 0 0 e 0 0 0 0 0 —ibt 0 0
- 0 0 —ibt 0 0 0 0 0 e 0 0 0 0 0 0 0
O 0 0 —f 0 0 —— 0 0 d 0 0 if 0 0 0
0 0 0 0 0 0 0 0 0 0 a O 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 e 0 0 —ibt 0
0 0 0 —ct 0 0 if 0 0 —if O 0 d+t 0 0 0
0 0 0 0 0 0 0O b O 0 0 0 0 e 0 0
0 0 0 0 0 0 0 0 0 0 0 &4 0 0 e 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 at

(2.5)
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where

a® = co2 (61 — o) {1 + tanh(hy — hz)w}

cog(f; — 02)

. sin(9, + 02)
bt = sin(0y — 62) cog0; — o) { 1+ tanh(hy — hy) ————=
(61 — 62) cog61 2){ Nhy 2)S|n(01—92)}
. cog61 + 0
= sin(6y — 6,) co6; — 67) {1 + tanh(hy + hg)m}
cog01 — 62)
iy + 65) (2.6)
. Sin(61 + 62
£ = sinf(0; — 6o) {1 £ tanhhy + hy)—————
c (61— 62) hhy + 2)SII’1(91—92)
co96; — 62) sin(91 — 6h)
d* = 1+tanhhy — hy)————= = 1+ tanh(hy + hy)——— =
ha 2)cos(91+92) ha 2)sm(91+92)
cog01 — 6o) sin(0, — 02)
e= ————— ==
coshhy — hy) coshhy + hy)
The second equalities for the Boltzmann weights and d* are valid due to constraint
(2.2).
For convenience, we introduce an equivalent fermiaRimatrix
Ra2(61, 62) = P12R12(61, 62) (2.7
wherePs; is the graded permutation
Pay.ps = (=D OPD5,55,5. (2.8)
The fundamental properties of the fermionizmatrix R12(01, 62) are summarized as
follows [32].
(1) Regularity (initial condition):
R12(00, 6o) = P12. (2.9)

(2) Graded Yang—Baxter equation:
R12(01, 02)R13(01, 63)R23(62, 63) = R23(62, 63)R13(61, 03) R12(61, 62) (2.10)

under the constraints

Ss'?nh;;f - % j=123
(3) Unitarity:

Ra2(61, 02)R21(62, 61) = p (61, 02)1 (2.11)
where

R21(62, 61) = P12R12(62, 61) P12
and

p (61, 02) = COS (01 — H2)[COS (01 — 62) — tantf(hy — hy) COS (H1 + 6,)].

Since the non-zero elements of tRematrix (2.7) are even with respect to the parRywx)
(2.3), i.e.

P(a) + P(B)+ P(@)+ P(B)=0 (mod 2 for Rup.ap (01, 02) # 0
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the graded Yang—Baxter equation (2.10) can be expressed in terms of the matrix elements
as [33]

Reapiarpr 01, 02) Ry (01, 03) Ry (8, 603) (—) P E P @ +P(e]
=R sy (02, 0 Ro .o (01, 03 Ry sy (01, 62) (—) P E P @FP DL (2 1)

Here the summations are taken over the repeated indices.
In our previous work [32], we found two important relations of the fermiaRimatrix
with constant matrices! andV. The first relation is the symmetry of the fermiortematrix

[Raz61.62.M& M| = 0 (2.13)

where the general form of the matriM is given by

M1 0 0 Mg
0 My My O

M= 0 Ms Mss O (2.14)
My O 0 My
with the condition
AM = M11Mag — MaiM14 = MooM3z — MasM3o. (2.15)
We call the matrixM symmetry matrix. For simplicity, we assumeM = 1 throughout the
paper.
The second relation is

TRaa(61, O: U)[v%;v] - [V@v]ﬁlz(el, b —U) (2.16)

where the general form of the matfixis given by
0 Vi Viz O
V21 0 0 V24

Vai 0 0 Va (2.17)
0 Vi Vaz O

V12Vaz — V1izVar = Vo1Vas — V31 Vou.

V=

In relation (2.16), thel/-dependence of the fermionig-matrix is explicitly written. The
coupling constant of the fermioni-matrix on the RHS is-U, or equivalently sy — —h4
andh, — —hy. The matrixV is related to the partial particle—hole transformation (1.7).
The constant matriced andV play an important role in the consideration of the symmetry
of the transfer matrix for the 1D Hubbard model (see section 3 and section 4). We remark
that the symmetry matrix of ShastryR-matrix is not of the form (2.14) (see the appendix).
This gives one of the reasons why the fermionic formulation employed in this paper is more
appropriate for the investigation of the 1D Hubbard model (1.1).

The monodromy matrix is defined as the ordered product of the fermiomiperators

T©) = 1:[ Ly (0) = Ly@O) - L1(0). (2.18)
m=1

From the (local) graded Yang—Baxter relation (2.4), we have the global relation for the
monodromy matrix

R12(61, 02)[T (61) (? T (62)] = [T (62) ? T (61)]Ra2(61, 62). (2.19)
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Define the (fermionic) transfer matrix by
stKT () = tr[(c* ® 6°)KT (0)] (2.20)

where the constant matrk assumes the form (2.14) and determines the boundary condition
[32]. In particular,K = I corresponds to the periodic boundary condition (1.4). Then from
the global graded Yang—Baxter relation (2.19), we can prove that the transfer matrix (2.20)
constitutes a commuting family

[StrKT (61), StKT (62)] = 0 (2.21)

which proves the integrability of the 1D Hubbard model with the (twisted) periodic boundary
condition.

3. SO(4) symmetry of the fermionic transfer matrix

We shall discuss th&O(4) symmetry of the fermionic transfer matrix (2.20). Let us
consider the following transformation of the fermioriieoperator

L, (0) =ML, 0)M (3.1)

where the constant matricé4 and M have the form of the symmetry matrix (2.14).

_ Since the matrice$/ and M are the symmetry matrices, the transformeaperator
L,,(0) (3.1) also satisfies the graded Yang—Baxter relation with Sd@e fermionic R-
matrix

R12(01, 02)[ £, (61) §> L (0] = [Ln(62) (? L (0] R12(61, 62). (3.2)
We now look for a special transformation of (3.1), which satisfies
AC:Nm(e; Cms) = £m(9, Ems)- (33)

Here we explicitly write the dependence of the fermiodieoperator on the fermion
operators. The fermion operatorg, and ¢,, are assumed to be connected through the
transformation law (1.10). We discovered that relation (3.3) is satisfied when the matrices
M andM meet the following conditions

Mas = M7, My = —Mj, Mzs = M3, Mz = —M3;
My = My Mg = Myq Mg = —Miy My =—Msy  (3.4)
Moy = M, Mszs = Mas Moz = M3 Mz, = M.
Condition (2.15) now becomes
|M11? + |M1af? = |Maal? + | Maaf? = 1. (3.5)
It is useful to introduce the submatrices of the matribeandM as

M M M. M.
Mcharge= ( 11 14) Mspin = ( 22 23)

My My Mz, Mss

\ / Mll M14 \ / M22 MZS
M =\ - - Mgpin= [ - - . 3.6
charge <M41 M44> spin (Mgz M33> ( )

Then conditions (3.4) and (3.5) are equivalent to the relations
I\-/lcharge: O“ZMchargJZ I\_/lspin = IVlspin Mcharge Mspin e SU(2). (3-7)

The corresponding transformation law of the fermion operators is

~ .~ 'i .
Cjnl 1Cmt \ _ (M3, —M23) Cmy  1Cmr My Mg (3.8)
|EL¢ 5ml M;3 M22 iCinT Cm) _M;I.k4 M;I'.(l .
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Hereafter, we implicitly assume conditions (3.7) for matriteandM. Then transformation
(3.1) is not a gauge transformation in a strict sense, bec&lise M (particularly

Mcharge7 Mchargd. SO We try assigning the different transformation laws to Zkeperators
for odd and even sites as

Ezn_l(e) = |\_/|_l£2n_1(9)|\/| Ezn(Q) = M_lﬁzn(e)l\_ﬂ. (3.9

The corresponding transformation law of the fermion operators on odd sites is, of course,
given by formula (3.8)

..T .~ T .
Con-1y V211 _ (M3, —Maz )\ [ Cu-1y €201t My Mg 3.10
1Co_1p  Con-1y 23 22 ICo_1p  Con-1y 14 11
Using the fact that the matriced and M are related by the exchangé,4 <+ —Ma4, the
transformation law for even sites can readily obtained as

(Egm —i52nT> _ (ME‘Z —Mzs) <C£n¢ _iCZnT> ( My M14> (3.11)
iEE,m —Cony Mz Mz iy —cany ) \—Miy M) .
Recalling the definition of the 2 2 matricesy,, (1.9), we can summarize the transformation
laws (3.10) and (3.11) as

li‘jm = M_l \I’mMcharge (3-12)

spin
which exactly coincides (1.10) with the corresponder@gs, = M, 1m andOcharge= Mcharge
As we explained in section 1, transformation (3.12) is $i@(4) rotation in the space of
the fermion operators. Therefore we can conclude that a kind of gauge transformation (3.9)
induces theS O (4) rotations for the fermion operators. We call transformation (3.9) the
SO (4) rotation for the fermionid.-operator (2.1). Note that the canonical anticommutation
relation (1.2) is preserved under transformation (3.12)

{Ejma Em’s’} = S Oss’ {El”, E]tl’s/} = {Emsv Em’s’} =0.

Let us consider thesO(4) invariance of the fermionic transfer matrix (2.20). First
we assume tha¥ is even and impose the periodic boundary condition. The I6cal4)
rotation for the fermionid.-operators (3.9) induces tHi#0 (4) rotation for the monodromy
matrix (2.18)

T©) = ]:[ L) =MIT(@O)M. (3.13)
m=1

Since the relation
st{X ()M} = st{MX (6)} (3.14)
holds, the transfer matrix (2.20) is invariant under the periodic boundary conditien X)
SUT (0; Cns) = SUT (0 Cins) (3.15)

where we write the fermion operators explicitly. In relation (3.1X)@) is any 4x4
matrix, which may depend on the fermion operators. On the other hand, the transfer matrix
strT (6; ¢,,5) can be expressed as

SUT (0; cins) = SUT(0; Cony) (3.16)
due to property (3.3). Combining (3.15) and (3.16), we establish
SHT (0; Cis) = SUT (6 Epy). (3.17)
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Relation (3.17) shows that the fermionic transfer matrix is invariant unde§ ¢h@) rotation
for the fermion operators (3.12). It indicates that all the higher conserved currents, which
are embedded in the transfer matrix, also haveStbg4) symmetry (see section 5).

We shall now write transformation (3.13) in terms of the submatridggge and Mgpin
(3.6). We introduce the following convenient notation for the monodromy matrix [27]
D11(0) Cu1(8) C1200) D12(0)

B11(0) An(6) A12(0) Bi2(0)

B21(0)  A21(0) A2(0) B2a(0)

D21(0) Ca(0) C22(0) D22(9)

where we regardi (9) = (A;;(0)), B(0) = (B;;(0)), C(0) = (C;;(9)) andD(0) = (D;;(9))
as 2x 2 matrices. Then transformation (3.13) can be expressed in terms &f atrices
A®©), ..., D) as

A9) = Mg} A0)Mspin

spin
B(6) = Mg;,B(0)Mcharge
C(0) = Mgl (0)Mspin
D(6) = Mgpage? @)Menarge
Because the transformed monodromy matrix also satisfies the graded Yang—Baxter relation
with the fermionic R-matrix
Riz01. 6| T 00 © 70| = [ 760 © 700 | Rual6s. 62)

the associative algebra defined by the graded Yang—Baxter relation should be invariant under
transformation (3.18). From (3.18), we notice an interesting fact that the subragtix
is transformed by the spiS¥/(2) rotation andD(#) is transformed by the chargsy (2)
rotation. We believe that this property plays a significant role in the application of the
algebraic Bethe ansatz for the 1D Hubbard model [34].

Next we consider the case of odd. The monodromy matrix transforms as

T®) =M 1T O)M. (3.19)

In this case, we have to twist the periodic boundary condition to make the transfer matrix
SO(4) invariant. The condition for the matriK in the transfer matrix is

TO) =

(3.18)

KM = MK. (3.20)
For example
i 00 O
010 O
K= 001 0 (3.22)
0 0 0 —i

solves the condition (3.20). From the formula in [32] (equation (3.17)), we can see that the
choice (3.21) corresponds to the twisted boundary condition

+ . .
Cc =lc CN+1r = —lc1
;\HM . TlT N+1t - 1 (3.22)
CN+1¢=|CI¢ CN+1, = —lcyy.-
Assuming (3.21) and (3.22), we can prove @ (4) invariance of the transfer matrix for
N odd as
StKT (0; cns) = SUKT (05 Cpig) (3.23)

in a similar way to the even case.
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4. Partial particle—hole transformation of the fermionic transfer matrix

The transformation law of the fermionit-operator corresponding to the partial particle—
hole transformation (1.7) was found in [27]. We shall discuss the transformation law in
connection with the relation (2.16). Consider the following transformations of the fermionic
L-operators

Loy 1(0) =V"2Lo 1OV L2(0) = V1L (0)V (4.1)
where
0 -1 0 O 01 0 O
1 0 0 O - 10 0 O
V=10 0 o0 1 V=100 0o -1 4-2)
0 0 -1 0 00 -1 O

Since the constant matric&andV are of the form (2.17), we have the following graded
Yang—Baxter relation with the transformédoperator (4.1)

R12(61, 02; —U)[ Ly (61; U) @ﬁm (623 U)] = [Ln (623 U) @ﬁm (61; U)Raa(61, 02; —U)
(4.3)

where we write thé/-dependence explicitly. The graded Yang—Baxter relation (4.3) implies
that the transformed. -operatorsC,,(6; U) are related to thé.-operators with the coupling
constant—U. In fact the following relations hold

Loy 1(0; can15, U) = L2, 1(0; E24-15, —U)

. ) (4.4)
L2y (0; cons, U) = 1L2,(0; Cons, —U)

where
A A |
Con—14 = C2n—1¢ Con-1| = —Cpy_q,
o . (4.5)
20t = C2nt Con| = Copyy-

Transformation (4.5) is nothing but the partial particle—hole transformation (1.7). Therefore
we call (4.1) the partial particle—hole transformation of the fermidnioperator (2.1).

It is quite interesting to note that transformation (4.5) can be written in terms of the
2 x 2 matrix ¥,, (1.9) as

O, = (=" (4.6)
where} denotes the Hermitian conjugation. Moreover, taking the Hermitian conjugation of
(3.12), we find

B,y = ML 8 Mepin 4.7)

charg
which shows that the spifit/ (2) Mspin and the charge&U (2) Mcharge are exchanged after
the partial particle—hole transformation.

We are ready to verify the invariance of the transfer matrix of the 1D Hubbard model
under the partial particle—hole transformation. First we assumeMhateven and impose
the periodic boundary condition. Then the partial particle-hole transformation of the
monodromy matrix induced by (4.1) is

T(O; cms, U) = VT (05 Cy, UV, (4.8)
From the relations
ST (0; cps, U) = StV T (B; s, UV} = —SUT (6; Cs, U)
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and
SHT (6; e, U) = iVSUT (6 Es, —U)
we obtain [27]
SUT (0; s, U) = —iVSUT (8; &5, —U). (4.9)

This proves the invariance of the fermionic transfer matrix (up to sign) under the the partial
particle—hole transformation (1.7). Note a relation

Str{X (0)V} = —str{VX (§)} (4.10)

which should be compared with (3.14).
We have a similar relation fax odd,

St{KT (0; ey, U)} = —iVISt{K T (0; ¢,5, —U)} (4.12)
whereK is given by (3.21). In the derivation of (4.11), we have used the relation
KVl =iv K.

Formula (4.11) indicates that the fermionic transfer matrixoodd is also invariant under
the partial particle—hole transformation (1.7) when we assume the twisted periodic boundary
condition (3.22).

5. SO(4) symmetry of the higher conserved currents

In section 3, we have shown ti$2 (4) symmetry of the transfer matrix, which means that
all the conserved currents of the 1D Hubbard model also haves éh@) symmetry. As

will be seen, theSO(4) symmetry of the conserved currents can be manifestly read out
in terms of the Clifford algebra. Hereafter, for simplicity of explanation, we assume the
number of sites is always even and impose the periodic boundary condition.

Although the graded Yang—Baxter relation ensures the existence of infinitely many
higher conserved currents in involution, it is not an easy task to obtain their explicit forms
from the transfer matrix [23]. To construct the higher conserved currents, we often use the
boost operator [35, 36], which recursively produces the higher conserved currents. However,
in the case of the 1D Hubbard model, the boost operator does not exist [37] and we have
to resort to a more direct computation.

The first higher conserved current of the 1D Hubbard model was found by Shastry
[19, 21] as

N
2 H f
1P =i Z Z (C;-"—ZYC'"S - C;Tnscm-&-ZS)

m=1s=1]
N L
—iU Z Z (C,t,Jrlgcms - C,In‘ycm+lv)(nm+l,—s + s — 1. (5.1)
m=1s=1
Subsequently, some higher conserved currents were obtained in a similar fashion [37—-39]
N N
1(3) = Z Z (Cjn+3rcmf + C:Ez.vc’"‘*‘g“) +U Z Z [(erhlecm—lY + Cj;zflscm"'h)
m=1s=1] m=1ls=1]
X(nm+1,fs + Ny, —s + Np—1,—s — %) + (Cjn+j_gcms - Cjnscm+ls)

1 1
X(CL_—scm—l,—s - CL_]_,_SCm,—s) - (nm-HLs‘ - E)(nm,—s - E)]
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N
+U Z[(CLJrchmT - CjnTcm+1T)(cjn+1¢Cm¢ - C,twchrli)
m=1

N
—(mr = D my — DI = U2Y D" (el gsems + €hemir) s — )
m=1s=1]

N
Xyt — 5 — %> Ay — 3y — 3) (5.2)
m=1

N N
19 =13 37 agm — chyemea) —20 30T [(c;ﬂ%cm el cmrar)

m=1s=1| m=1s=1]
m+3 ; m+2
1 ] ] 1
X Z(nk,fs - 5) - (Cer]_scms - C,Tnschrls) Z (nk,fs - i)
k=m k=m-—1

; m+2 ) )

T T

+(Cpp0sCms + ch Cmt2s) E (Cryn _sCh—s — ck,SCkH,_s)}
k=m—1

N
+4|U2 Z Z {(Cj,/l+2scm3 - Cjnscm+2v)[(nm,—s - %)(”m+l,—s - %)
m=1s—14

1 1 1 1
+(nm,—x - é)(nm-&-Z,—s - i) + (nm-&-l.—s - i)(nm+2,—s - E)]
1
+(C,Tn+1scms + CLSCerls)[(C,Tn,l,,Xcm,fs - Ciz,fschrl,fs)(nerl,fs - j)

f 1
+(Ci1+1,7xcm+2,—s - C,Tn+zqfscm+l,—x)(nm,—s - 2)]}

N
—i—2|U3 Z Z (Cjn+hcms - c,];qscm-&-ls)(nm-kl,—s + 1y — 1. (5.3)

m=1s=1]
These currents are embedded in the fermionic transfer matrix (2.20) and shositd(Bg
invariant from the result in the previous section. One can confirmStfi¢4) invariance
of these currents using the transformation law of the fermion operators (3.12). In the
following, we present a different approach: we shall rewrite these currents in manifestly
SO(4) invariant forms by using the Clifford algebra.

Definel'/(j =1,...,N,a=1,...,4) by

[3i1= Chygy + ot I3 1= i(Ch 1 — C2i-11) 5.4)
T3, 1= Ch 1y + o1y T3 =i(ch, 1, — c2n-1)
and
1 _ T 2 _ f
[, = 1(cant = ¢3p) [0 = Copp +Conp (5.5)
anzi(CZni_C;ll) anzc;w+c2n¢
wheren =1, ..., % Then the operatorsy satisfy the defining relations of the Clifford
algebra [12, 40]
{9, T7} = 28,8 jk=1,...,N a,b=1,...4 (5.6)

In terms ofI"}, the SO (4) rotation for the fermion operators (3.12) can be expressed simply
as

4
e = Zeabrjb G = (G*) € SO(4). (5.7
b=1
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The relation between the matric€sandM in section 3 is explicitly given by

G=GYGg®
& & & & o O 83 —&
g |5 & & & co_| % % L i
& & &b & 3 —8 o —a
& & —& & L2 &3 4 b

whereg; andn; are real numbers given by

&0 = Re(M11) &1 =1Im (M) & = Re(My) &3 = 1M (M)

lo = Re(Mzp) {1 =1m (M2) {2 = Re(Maz3) {3 = Im (M23)
3 3 (5.8)

Clearly the matrixG®™ corresponds to the chargd/(2) and the matrixG® corresponds
to the spinSU(2). It is an interesting exercise to confirm that the matri€é8 and G
commute each other

GVUG?@ = gAGWD.
Define the operatoF? by

1
F rirersr4 — Z rererere.
‘_1111_4! eabfdfajjcj (5'9)

The operator[‘]r” has the following properties
{r;.19}=0 [® ¢ =0 j#k a=1,...,4 (5.10)

It is clear that the operators such as
4
aypa 5
> oy r; (5.11)
a=1

are invariant under th& O (4) rotation (5.7). We use this fact to rewrite the conserved
currents. The Hamiltoniaf = IV in terms of the operatorE¢ andT? is [12, 40]

1Y =33 (—re r¢+ud 1 (5.12)
Jj a J

where
iU
Hereafter, we neglect the difference of an overall factor. Formula (5.12) gives a manifestly
SO (4) invariant representation of the Hamiltonian.
In the same way, we express the higher conserved currents in terms of the opéfators

and F5 as

(2)—22 Hzl““ruZZ( /T¢I (7, —T7) (5.13)
AR HIE 1>fr+3ra—uz[r5+2r+zm -
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5 lra b a b 5
+ Z(FHZ j+1 J+1FJ FJ+1 FJ+1FJ+1FJ FJ j )i|
a#b

+u? Z Z( 1)/T¢,,T90% 0%+ u® Z r? (5.14)

1<“)=ZZF;-‘+4F;+MZ<—1>’{Z[ TS (M85 — T5) = T4, TS, — T)]
J J

b b5
+Z[F1+3 Jj+2 ]+2F/ ]+2+F1+3F/+1FJ+1F 1—‘/+1
a#b

b5
l—‘]a-FZFJ-5—21—‘1-5—11—‘] 1—‘1-5—2 +T 2F1+1Farj 1—‘j }

2 5
tu Z[Z [fy 2T}l = ;F 2l DT (e = T
a

+u3ZZ(—1)- 4 Tere, —T?). (5.15)
J a

Since the terms that constitute (5.13)—(5.15) are of the form (5.11), we can see that the
higher conserved curreni$?, I® andI® are also manifestly§ O (4) invariant. Note that

the constrainta # b on the summations do not break tB® (4) symmetry. For example,

we can write

5
IR NP A S o Z LR VY o Y Z T2l T (5.16)
a#b

Both terms on the RHS of (5.16) are cleafly) (4) invariant.
The infinitesimal generators of the0 (4) rotations (5.7) are given by [41]

1
Qb = Qb = = ’ [Ty, 171, (5.17)

In fact the generator (5.17) fulfils the defining relation of the Lie algeali@)

[Qab’ ch] — _i(schad _ (Sac de _ (de Qac + aad ch)- (518)
We also have a relation
[Q*, T§] =i(d“T} — 8"TY) (5.19)

which is nothing but the infinitesimal transformation of (5.7). Using (5.19), one can confirm
the commutativity

[0, 1M =0 n=1,...,4 (5.20)

which shows the Lie algebreo(4) symmetry of the conserved curremtd’. Actually the
generators of the spisw(2) (1.5) and the chargex(2) (1.6) are related t@* as

$'=-30"-0%)  §=30%+0%  §=-30%-0% (5.21)
n'=-30"+0%)  w’=30%"-0%  n=-30%+0% (5.22)
where we introduced”, S”, n* andn” through the relations

St =85 +is” nt =" £in’.

For the Clifford algebra (5.6), the partial particle—hole transformation (1.7) corresponds
to

ré— -ré (5.23)
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Note that transformation (5.23) exchanges the spi(® (5.21) and the charge:(2)
(5. 22) As for the conserved currents, transformation (5.23) preserves the operators such
as Za 1 I'{T¢, but changes the sign (Ff5 From the explicit formulae (5.12)—(5.15), one

can immediately find that the conserved curreftts(n = 1, ..., 4) are invariant under the
partial particle—hole transformation
ijr’ — —l"j5 u— —u. (5.24)

This is consistent with the result in section 4.

6. Discussions

We have investigated th&O (4) symmetry of the 1D Hubbard model from the QISM point

of view. Our approach is based on the fermionic formulation of the Yang—Baxter relation
for the 1D Hubbard model found by Olmedillet al [22]. It consists of the fermionic
R-matrix and the fermionid.-operator. We have discovered the transformation law (3.9)
of the fermionicL-operator under th&8 O (4) rotation. It is a kind of gauge transformation

and induces the transformation of the monodromy matrix. Using these properties, we have
established theS O (4) invariance of the transfer matrix. We have also discussed the case
in which the number of lattice sites is odd. In this case, it is necessary to twist the periodic
boundary condition.

Although the approach is different, our result can be considered as a Lie group
generalization of theu(2) @ su(2) symmetry in [27].

The SO (4) symmetry will play an important role in the algebraic Bethe ansatz for the
1D Hubbard model, which was recently explored by Ramos and Martins [34]. In particular,
we have clarified the transformation laws of the elements of the monodromy matrix under
the SO (4) rotation. They are used to construct the eigenstates of the transfer matrix.

We would like to emphasize the advantage of the fermionic formulation of the Yang—
Baxter relation. It is difficult to discuss th®0 (4) symmetry of the Hubbard model through
Shastry’sR-matrix and the related transfer matrix.

The SO(4) invariance of the transfer matrix ensures thi®@(4) invariance of the
conserved currents. We have demonstratedstbg¢4) symmetry of the higher conserved
currents employing the Clifford algebra, which corresponds to the spinor representation of
the rotation group. It should be interesting to explore a representation of the fermionic
L-operator itself in terms of the Clifford algebra.

On the infinite lattice, the Lie algebreo(4) = su(2) ® su(2) symmetry of the 1D
Hubbard model is extended to the Yangiaris(4)) = Y (su(2)) ® Y (su(2)) symmetry
[42, 43]

[Y (so(4), IV =0

as was discovered by Uglov and Korepin [44]. The generators(af(¥)) can be expressed
in terms of the Clifford algebrd’¢ as follows

0
((117)__ Z[ Jj’ J
o = Tty + (-1 ) B e erh

Jj>k k>j 7 c#a,b

By using the fundamental properties of the Clifford algebra (5.6), (5.9) and (5.10), we
have confirmed that the higher conserved currdfityn = 2, 3, 4) also have the Yangian
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Y (so(4)) symmetry, i.e.
(09,171 =109, 1"1=0 n=1....4

All the conserved currents of the 1D Hubbard model on the infinite lattice are conjectured
to have the Yso(4)) symmetry. In fact Murakami and @mann [45] recently showed the
existence of an infinite number of the conserved currents which have the Yangian symmetry
on the infinite lattice. However, one of the twas¥:(2)) that constitute Yso(4)) drops out

[45]. It seems to be difficult to prove the full(Yo(4)) symmetry of the conserved currents
simultaneously in their method.
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Appendix. Symmetry matrix of Shastry’s R-matrix

The L-operator for the coupled spin model (1.11) [19-22] is expressed as

€' p(0)q,(0) PO, 0, G, (0) O T
| PO elpid)g,©)  elo,T O G (6)
Ln®=1" 5t4x0) ehote.  elpr@)qi©®)  pe@)r, A1)
eo,tt A C)) PO & p, (0)g,, ()
where

P (0) = 3(cost + sind) & 3(coss — sind)o
g (0) = 3(cosd + sing) + 3(cosy — sind)r;.

Here the coupling constantis related to the spectral parametehrough formula (2.2). The
R-matrix R12(61, 6,), which satisfies the Yang—Baxter relation (1.12) with th@perator
(A.1), is connected to the fermionig-matrix (2.5) through the formula [22]

(A.2)

R12(61, 62) = W' R2(61, 02) Wi (A.3)
where Wy, is a diagonal 16< 16 matrix
Wi = diag(1, 1, —i, —i, —i, —i,1,1, -1, —-1,1i,i,i,i, =1, —=1). (A.4)

We consider the symmetry matri of Shastry’sR-matrix Rlz(el, 6,) which is defined
to be a constant matrix satisfying

[R12(61, 62), M ® M] = 0. (A.5)

Here the matrix elements & are assumed to be commuting numbers. One might suppose
the symmetry matrix of Shastry’®-matrix is identical to that of the fermioni®-matrix
(2.14). However, surprisingly enough, we notice that they take different forms. In fact,
solving the defining equation for the symmetry matrix (A.5) directly, we find that the
followings are the symmetry matrix of ShastryRsmatrix

@ 000\ /o« 0O 0 O /0 O O « 0 0 0 «
o g 0 0 0080 08 00 008 O
M=1o %9, o]'loy o0 of'looy ol loy 0o of AO

00 03 0 0 03 § 0 00 § 0 0 0
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wheree, 8, y ands arec-numbers obeying
ad = By. (A.7)

We ignore the difference of overall factors of the matrices. Then each matrix (A.6) depends
only on two parameters. The result means that Shas®ymatrix does not reflect the

SO (4) symmetry of the fermionic Hamiltonian (1.1). Therefore th@(4) symmetry of

the transfer matrix that we explored in this paper may not be discussed if we use Shastry’s
R-matrix andL-operator (A.1).
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